Direct and Selective Arylation of Tertiary Silanes with Rhodium Catalyst

J. Org. Chem. **2008** ASAP Article. Yoshinori Yamanoi and Hiroshi Nishihara

Current Literature: 8/30/08 David Arnold

Importance of Arylsilanes: Applications to Biological and Material Sciences

• Cancer Theraputics:

• Material Sciences: Organic Phosphorescent Materials: Organic Light Omitting Diodes

DDT 2003, 8, 551; J. Org. Chem. 2007, 72, 6241.

Application to Organic Synthesis: Substrates for Fluoride-Promoted Hiyama Coupling Reactions

• Example

Traditional Methods Used to Access Arylsilanes and Early Studies in Palladium Catalyzed Reactions

• Reaction of Grignard or organolithium reagents:

Author's Earlier Work on Palladium-Catalyzed Silylations of Aryl Halides

- Aryl halide reactivity was found to be Ar-I > Ar-Br > Ar-Cl.
- Addition of base was found to essential to suppress the formation of the reduction product.
- The reaction was found to be intolerable of *o*-substitution or electron-withdrawing groups on the aryl halide.

J. Org. Chem. 2005, 70, 9607.

Reaction Optimization

entry	catalyst	base	solvent	temp	time/h	<u>1a</u>	2	3	yield of 2 (%)
1 ^c	$Pd(P(t-Bu)_3)_2$	K ₃ PO ₄	NMP^{d}	rt	5	е	<1	99	f
2	PdCl ₂ (dppf)	K ₃ PO ₄	NMP	rt	96	52	2	46	f
3	Pd(PCy ₃)	K ₃ PO ₄	NMP	rt	96	57	<1	43	f
4	IrCl(CO)(PPh ₃) ₂	K ₃ PO ₄	NMP	rt	96	75	е	25	f
5	RhCl(PPh ₃) ₃	K ₃ PO ₄	NMP	rt	96	1	2	97	f
6	[RhCl(nbd)] ₂	K ₃ PO ₄	NMP	rt	96	е	41	59	32
7	RhCl(CO)(PPh ₃) ₂	K ₃ PO ₄	NMP	rt	96	e	96	4	88
8	[Rh(cod) ₂]BF ₄	K ₃ PO ₄	NMP	rt	96	e	96	4	91
9 ^c	RhCl(CO)(PPh ₃) ₂	K ₃ PO ₄	NMP	50 °C	10	<1	89	11	83
10^c	$[Rh(cod)_2]BF_4$	K ₃ PO ₄	NMP	50 °C	10	e	84	16	81
11	[Rh(cod) ₂]BF ₄	none	NMP	rt	96	28	е	72	f
12	[Rh(cod) ₂]BF ₄	K ₂ CO ₃	NMP	rt	96	36	59	5	40
13	$[Rh(cod)_2]BF_4$	Et ₃ N	NMP	rt	96	25	60	15	49
14	[Rh(cod) ₂]BF ₄	KOAc	NMP	rt	96	2	94	4	82
15	RhCl(CO)(PPh ₃) ₂	K ₃ PO ₄	DMF	rt	96	е	53	47	50
16	[Rh(cod) ₂]BF ₄	K ₃ PO ₄	THF	rt	96	3	60	37	54
17	[Rh(cod) ₂]BF ₄	K ₃ PO ₄	toluene	rt	96	61	4	35	f

^{*a*} Reaction conditions: 2-iodoanisole (0.5 mmol), triethylsilane (1.0 mmol), catalyst (0.025 mmol), base (1.5 mmol), and solvent (1.0 mL). ^{*b*} The ratio was determined by GC analysis of the crude reaction mixture. ^{*c*} The reaction was carried out in the presence of 1 mol % of catalyst. ^{*d*} NMP: *N*-methylpyrrolidinone. ^{*e*} No detection. ^{*f*} The silylated product could not be isolated by column chromatography.

• Optimized Conditions Found by GC Analysis:

Catalyst: 5% RhCl(CO)(PPh₃)₂ or 5% [Rh(cod)₂]BF₄ Solvent: NMP Base: 3 equiv. K_3PO_4

Relative Reactivities of Aryl Halides and Triflates Under Optimized Conditions

^{*a*} Reaction conditions: aryl (pseudo)halide (0.5 mmol), triethylsilane (1.0 mmol), [Rh(cod)₂]BF₄ (0.025 mmol), K₃PO₄ (1.5 mmol), and NMP (1.0 mL) at rt. ^{*b*} The ratio was determined by GC analysis. ^{*c*} No additive. ^{*d*} No detection. ^{*e*} The silylated product could not be isolated.

• Reactivity Order: Ar-I > Ar-Br > Ar-Cl, Ar-OTf.

Reaction Scope

- Good functional group tolarance with *meta* and *para*-substituted aryl iodides: -alkyl, -OMe, -SMe,-OH, -NMe₂, -NH₂, -CO₂Et, -C(O)Me, -CF₃ and -CN
- The reaction is sensitive to both steric and electronic effects for *ortho*-substituted aryl iodides.

Advanced Substrate Scope: Aromatic Heterocycles, Multiple Couplings and Non-Aromatic Couplings

^a Conditions: (A) R-I (0.5 mmol), HSiR₃ (2.0 equiv), K_3PO_4 (3.0 equiv), RhCl(CO)(PPh₃)₂ (5 mol %), NMP (1.0 mL), rt, 4 d. (B) R-I (0.5 mmol), HSiR₃ (2.0 equiv), [Rh(cod)₂]BF₄ (5 mol %), NMP (1.0 mL), rt, 6 d. (C) Ph₃SiH (1.0 mmol), R-I (3.0 equiv), K_3PO_4 (3.0 equiv), rt, 4 d. (D) Ph₃SiH (1.0 mmol), R-I (3.0 equiv), K_3PO_4 (3.0 equiv), 0 °C, 6 d. ^b The yield was based on the amount of triphenylsilane. No silylated product was obtained.

Proposed Mechanism

• Key Catalytic Species: Rh(H)(SiR₃)₂

Application of Methodology

• Previously Reported Synthesis of TAC-101:

• Application of Methodology to the Synthesis of a TAC-101 Analogue:

J. Med. Chem. 1990, 33, 1430.

Conclusions

• The authors have developed a novel rhodium catalyzed reaction between trialkylsilanes and aryl halides to produce arylsilanes.

• The reaction developed through this methodology demonstrated good functional group compatibility and substrate scope.

• The developed methodology has wide application in the fields of organic synthesis, medicinal chemistry and material sciences.

